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Abstract. An explicit formula for general harmonic oscillator brackets is derived. The 
formula is particularly useful and convenient in numerical computations. 

1. Introduction 

In many problems of nuclear physics we have to perform a transformation of the 
two-particle basis from the single-particle coordinates to the centre of mass and 
relative coordinates. This transformation is smoothly carried out in the harmonic 
oscillator basis where it is represented by the well known harmonic oscillator Talmi- 
Moshinsky brackets (TMB) (Talmi 1952, Moshinsky 1959, Smirnov 1961). In other 
bases the individual single-particle functions are often expanded in terms of the 
harmonic oscillator functions and then the Talmi-Moshinsky transformation is used. 
Such a procedure needs calculation of many TMB and is quite time-consuming. It is, 
therefore, desirable to try to derive simple and efficient formulae for TMB. 

The closed form for TMB has been derived (Baranger and Davies 1966, Trlifaj 
1972). Trlifaj's formula especially is very simple and the computer programs based on 
it (Sotona and Gmitro 1972) are the fastest ones for the computation of a single TMB 
to date. For the computation of the large set of TMB another procedure (Feng and 
Tamura 1975) using the formula of Baranger and Davies (1966) has also proved to be 
efficient. For the other formulae and techniques in the evaluation of TMB we refer to 
the discussion in the above mentioned papers. 

In the present paper we give a new simple formula for TMB. Our procedure is 
somewhat similar to the procedure of Trlifaj (1972). It agrees with that of Trlifaj 
when the relative orbital momentum of the two particles 1 = 0. A self-evident fact that 
the Talmi-Moshinsky transformation also holds for a particular value of the coor- 
dinates, namely when the relative coordinate of the two particles r = 0, was skilfully 
employed by Trlifaj. This method can be applied only when Z=O. For the other 
relative momenta Trlifaj uses the generalised relation between the general and 1 = 0 
brackets (Baranger and Davies 1966). 

We also use the appro'ach of Trlifaj, but first we perform a complete deco- 
mposition of the angular part of the Talmi-Moshinsky transformation. We obtain an 
expression for the general TMB without employing the rather complicated relation 
between the general and I = 0 brackets. Our formula has proved to be more efficient 
and faster than the previous ones in the numerical computation, especially when large 
radial quantum numbers are involved. 
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2. Definitions 

The harmonic oscillator brackets (nlNL; A Inllln212; A ) D  are defined through the rela- 
tion 

C (llm 1 /2m2 IACL MnTj,  (rl Mn:i*(r2) 
m1m2 

= 1 (lmLMIAp)(nlNL; AInllln2l2; A b $ $ ( r ) $ k ( R ) ,  (1) 
NLMnlm 

where the quantities (ImLMlAp) are the Clebsch-Gordan coefficients. The harmonic 
oscillator functions are given by 

( 2 )  1+1 2 $$(r)  = cnlrl exp(-Y)L, ( r  )Y;"(?), 

with the normalisation constant 

and the Laguerre polynomials 

We use as an argument in ( 2 )  the vector r related to the usual position vector x by 
1 / 2  

r = ( y )  x 

with mass of the particle m and harmonic oscillator frequency w. The single-particle 
coordinates rl and r2 and the centre of mass and relative coordinates R and r in ( 1 )  
are related by the orthogonal transformation 

where D is the mass ratio D = ml/mz .  
The conservation of the energy and parity leads to selection rules 

(3 ) 
(-1) 1 f L  - - ( - l ) l l+12 .  2n + 1 + 2 N  + L = 2nl+Z1+2n2+12 

3. Derivation 

We shall try to rewrite the left-hand side of ( 1 )  in terms of the variables R and r. We 
start with a decomposition of the products r#Yp(?;) (i = 1 , 2 )  according to the well 
known formula (Varshalovich et a1 1975) 
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where the end square brackets denote the composition of the angular momenta. The 
exponent part is si’mply given by 

exp[ - +(r:  + r :)I = exp[ - t (R + r ’)I. 

The Laguerre polynomials are rewritten as 

D 1 
(l+o R 

+ -r ’) 
l + D  

12+k2+& 1 Rz+-r’) D 
x L f 1 2  ( l + D  l + D  ‘ 

Here, we have used the formula (Gradshteyn and Ryzhik 1962, equation (8.977.2)) 

The scalar product (R  . r)k1ck2 is expanded as (Varshalovich et a1 1975): 

(-l)k(kl+k2)!J(2k+ 1) 
[ Y k ( f i ) Y k ( + ) ] O O ,  

k , + k 2  k l + k 2  ( R . r ) k 1 + k 2 = 4 ~ R  r 1 
k (k l+  kz-k)!!(kl+ k2+ k + l)!! 

w h e r e k = k l + k Z ,  k l + k Z - 2  , . . . ,  1orO.  
Thus we have achieved a full separation of the radial and angular dependence in 

coordinates R and r on the left-hand side of (1). Now projecting (1) on the particular 
values of L and I ,  dividing it by r’ and equating r = 0, in the spirit of the method of 
Trlifaj (1972), we are left with 

= 1 (nlNL; Alnllinzlz; A)DCNLC,IR~ e-R2’ZLr’(Rz)  
Nfl 

x L:k(0)(-l)f+L-A. 
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Here, we have got from the angular momenta recoupling (Varshalovich er a1 1975) 

We introduce in (4) a new summation variable m = A 2  + h 4  and instead of kl + kZ we 
write I - m. 

We can slightly simplify the sum (see appendix) 

( 5 )  

The summation variables N and n in (4) are dependent according to the energy 
relation (3). We use the orthogonality properties of the Laguerre polynomials, and 
project out the particular TMB. The integrals that follow: 

we calculate in the same way as Trlifaj (1972); the Laguerre polynomials 

formula (7.414.11) of Gradshteyn and Ryzhik (1962) is applied. 

LAl-,& I +k + I  [D/( l  +D)R2]  and L!.$%2+'[l/(l +D)R2]  are explicitly written down and 

The final result for TMB is 
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r[t(r, + 1 2 +  I +L)-m +jl +j2+5][t(ll + 1 2 +  1 -L ) -  m +jl +j2]! 
X 

(nl-  kl -j1)!(n2- k2-j2)!r(jl+Il+ k l + f )  
x r(j2+ 1 2 +  k2  +$)[t(ll + l 2  + 1 -t)- m - N  + jl + j 2 ] !  

(8) 

Here, the summation variables are restricted by the usual angular momentum limita- 
tions and by the factorials in denominators. 

4. Discussion 

For the case I = 0 our final formula for TMB agrees with that of Trlifaj (1972). This was 
to be expected, since the procedures of derivation are the same in this special case. For 
the general brackets we have not found any direct connection with the other formulae. 
There is no simple way of showing the equivalence with the other formulae. 

Our formula is not symmetrical in all the quantum numbers involved. It is 
particularly convenient to have 1 as the lowest of the orbital angular momenta in TMB. 
This can be achieved using the symmetry relations for TMB (Aguilerra-Navarro et a1 
1970). 

One can see from equations (6)-(8) that the quantities Q, depend only on the 
orbital quantum numbers. Dependence of TMB on radial quantum numbers is 
contained in the quantities T,. Such a separation of the orbital and radial parts is 
possible also in the previous formulae for TMB (Baranger and Davies 1966, Trlifaj 
1972, Feng and Tamura 1975). In our case, however, the orbital and radial parts have 
only one common summation variable. This is useful in computation of large matrices 
of TMB with fixed orbital momenta since it is possible to compute the orbital part only 
once. 

In the orbital part Q, the 9-j symbol with two stretched configurations appears. It 
can be calculated conveniently as a single sum (Jucys and Bandzaitis 1965, Sharp 
1967). In the formula of Trlifaj (1972) the 9-j symbol with one stretched configura- 
tion occurs, which may be expressed as a double sum. 

We have ten independent summation indexes, including two from 9-j and 6- j  
symbols, in the present formula. At the same time, Trlifaj’s formula contains seven 
independent summations, including two from the 9-1 symbol. The summations are, 
however, more factorised in our expression. We have a larger number of summation 
variables, but the sums have a lower folding than those in the formula by Trlifaj 
(1972). In the final effect our formula is simpler to compute than that of Trlifaj. 
Moreover, the part depending on the radial quantum numbers appears in equations 
(6)-(8) in a fourfold sum, whereas in Trlifaj’s formula it appears in a fivefold sum. 
Therefore, our expression will be efficient especially for large radial quantum 
numbers. 
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We have written a computer program based on equations.(6)-(8) and compared 
results with the program of Sotona and Gmitro (1972) where Trlifaj’s formula has 
been used. The time gain with our program has been a factor of about 1.5 and has 
reached a factor of 3 when the TMB with higher radial quantum numbers (n = 8) has 
been computed. 
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Appendix 

In this appendix we prove the relation (5)T. We rewrite the left-hand side of ( 5 )  in the 
form 

which, after explicitly writing the Laguerre polynomials, is 

(- 1y”+iZx Ilx$ (-1)~1 r(nl + (yl + k l  + 1 ) r ( n 2 + ~ Z +  k 2 +  1) 
j l j 2  c jl!j2!(n1 -jl)!(n2-j2)! k l k z  1 ~ l +  ‘23 A Ikl!k2! rG1 + a1 + kl + 1y-0’~ + a2 + k2  + 1) * 

Now we use the relation 

k , + k , - A - l  6 ( k l +  k2, A ) = -  ds s 27ri 9- 
with the complex contour of integration around the origin. Noting the definition of 
the confluent hypergeometric function  CY, p ;  z )  (Gradshteyn and Ryzhik 1962) we 
get 

j l j 2  ~l!jZ!(nl-~l)!(n2-j2)! r(j1 +a1 + l)r&+a:!+ 1) 
(- 1 y”+j2x r (n  + CY + 1 )r(nz + a2 + 1 ) c 

X ~ ~ ~ ~ ( n l + a l + l , j l + n l f l ;  - s ) 4 ( n 2 + a 2 +  1,j2+CY2+1; SI. 
272i s 

(A.2) 
Using the transformation formula 

4 ( a , P ; z ) = e L 4 ( p - a , 8 ; z )  

and the relation between the confluent hypergeometric function and Laguerre poly- 
nomial 

t The procedure of the proof has been suggested to us by L Trlifaj 
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we rewrite (A.2) as 

This is simply equal to 

(-l)kl 
k1!k2! ( n l  - kl -j1)!(n2- k 2 -  j 2 ) ! r ( k 1  +il +al  + 1 ) T ( k 2 + j 2 + ~ 2 +  1) 

r ( n l  +al  + l ) r ( n z + a 2 +  1) 
X- 

or equivalent to 
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